Delineating a Conserved Genetic Cassette Promoting Outgrowth of Body Appendages

نویسندگان

  • Congxing Lin
  • Yan Yin
  • Sheila M. Bell
  • G. Michael Veith
  • Hong Chen
  • Sung-Ho Huh
  • David M. Ornitz
  • Liang Ma
چکیده

The acquisition of the external genitalia allowed mammals to cope with terrestrial-specific reproductive needs for internal fertilization, and thus it represents one of the most fundamental steps in evolution towards a life on land. How genitalia evolved remains obscure, and the key to understanding this process may lie in the developmental genetics that underpins the early establishment of the genital primordium, the genital tubercle (GT). Development of the GT is similar to that of the limb, which requires precise regulation from a distal signaling epithelium. However, whether outgrowth of the GT and limbs is mediated by common instructive signals remains unknown. In this study, we used comprehensive genetic approaches to interrogate the signaling cascade involved in GT formation in comparison with limb formation. We demonstrate that the FGF ligand responsible for GT development is FGF8 expressed in the cloacal endoderm. We further showed that forced Fgf8 expression can rescue limb and GT reduction in embryos deficient in WNT signaling activity. Our studies show that the regulation of Fgf8 by the canonical WNT signaling pathway is mediated in part by the transcription factor SP8. Sp8 mutants elicit appendage defects mirroring WNT and FGF mutants, and abolishing Sp8 attenuates ectopic appendage development caused by a gain-of-function β-catenin mutation. These observations indicate that a conserved WNT-SP8-FGF8 genetic cassette is employed by both appendages for promoting outgrowth, and suggest a deep homology shared by the limb and external genitalia.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Patterning of the branched head appendages in Schistocerca americana and Tribolium castaneum.

Much of our understanding of arthropod limb development comes from studies on the leg imaginal disc of Drosophila melanogaster. The fly limb is a relatively simple unbranched (uniramous) structure extending out from the body wall. The molecular basis for this outgrowth involves the overlap of two signaling molecules, Decapentaplegic (Dpp) and Wingless (Wg), to create a single domain of distal o...

متن کامل

Dynamics of Space Free-Flying Robots with Flexible Appendages

A Space Free-Flying Robot (SFFR) includes an actuated base equipped with one or more manipulators to perform on-orbit missions. Distinct from fixed-based manipulators, the spacecraft (base) of a SFFR responds to dynamic reaction forces due to manipulator motions. In order to control such a system, it is essential to consider the dynamic coupling between the manipulators and the base. Explicit d...

متن کامل

Genetic evidence for the subdivision of the arthropod limb into coxopodite and telopodite.

Arthropod appendages are thought to have evolved as outgrowths from the body wall of a limbless ancestor. Snodgrass, in his Principles of Insect Morphology (1935), proposed that, during evolution, expansion of the body wall would originate the base of the appendages, or coxopodite, upon which the most distal elements that represent the true outer limb, or telopodite, would develop. The homeobox...

متن کامل

The origin and evolution of appendages.

Current awareness of gene expression patterns and developmental mechanisms involved in the outgrowth and patterning of animal appendages contributes to our understanding of the origin and evolution of these body parts. Nevertheless, this vision needs to be complemented by a new adequate comparative framework, in the context of a factorial notion of homology. It may even be profitable to categor...

متن کامل

A conserved PTEN/FOXO pathway regulates neuronal morphology during C. elegans development

The phosphatidylinositol 3-kinase (PI3K) signaling pathway is a conserved signal transduction cascade that is fundamental for the correct development of the nervous system. The major negative regulator of PI3K signaling is the lipid phosphatase DAF-18/PTEN, which can modulate PI3K pathway activity during neurodevelopment. Here, we identify a novel role for DAF-18 in promoting neurite outgrowth ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2013